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The exact model we are going to study is the following: 0 ‘ ‘
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1 The extension to multi-index models introduces an exponent for each target size.
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High dimensional limit resources allows to use larger batch sizes, and learn faster. ioﬂ 1 ;qf/
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o . e There exists an optimal batch size that is the smallest one that , , , , References
recovered the target directions, namely the correlation between student and . .
. L e allows to reach the critical time: L f—1p_1 7
teacher weights is distinguashable from random initialization. The recovery . 2 2
time is n, = d2. 1 = log,nyp [1] On the sample complexity of learning generalized linear models with
T =min{t > 0: |[W,W*"|| > n} SGD Learning (11 — 1) one-pass stochastic gradient descent, Gérard Ben Arous, Reza Gheissari,
1 e Aukosh Jagannath. The Journal of Machine Learning Research, Volume
for a fixed parameter € (0, 1) independent from d. | Ff———— MM MA 22, Issue 1, 2021.
b 4
We fully characterize the SGD ability to correlate with the 1 : § X Proj. Corr. d=512 i N AR ¢ . . Spherical SGD Learning two-layer neural networks, one (giant) step at a time, Yatin
target in terms of i and 9. : g;? glanj:;ls 2 m . | $ 4 P Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, Ludovic Stephan.
Also the weak recovery time scales with the dimension 7" o d’. . X ooy o 4024 ®, = ) R * . . arXiv preprint arXiv:2305.18270
S £ > A It behaves like the correlation loss,
: ® Sph. Corr. d=1024 - 4 but with different coefficients. Phase diagram of Stochastic Gradient Descent in high-dimensional
A oph Plin d=102¢ two-layer neural networks Rodrigo Veiga, Ludovic Stephan, Bruno
" g Loureiro, Florent Krzakala, Lenka Zdeborova. Advances in Neural
Information Processing Systems 35, 2022.

—_
i
—




